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Data science competitions are becoming increasingly popular for enterprises collecting advanced innovative
solutions and allowing contestants to sharpen their data science skills. Most existing studies about data sci-
ence competitions have a focus on improving task-specific data science techniques, such as algorithm design
and parameter tuning. However, little effort has been made to understand the data science competition itself.
To this end, in this article, we shed light on the team’s competition performance, and investigate the team’s
evolving performance in the crowd-sourcing competitive innovation context. Specifically, we first acquire
and construct multi-sourced datasets of various data science competitions, including the KDD Cup 2019 ma-
chine learning competition and beyond. Then, we conduct an empirical analysis to identify and quantify a
rich set of features that are significantly correlated with teams’ future performances. By leveraging team’s
rank as a proxy, we observe “the stronger, the stronger” rule; that is, top-ranked teams tend to keep their
advantages and dominate weaker teams for the rest of the competition. Our results also confirm that teams
with diversified backgrounds tend to achieve better performances. After that, we formulate the team’s future
rank prediction problem and propose the Multi-Task Representation Learning (MTRL) framework to model
both static features and dynamic features. Extensive experimental results on four real-world data science
competitions demonstrate the team’s future performance can be well predicted by using MTRL. Finally, we
envision our study will not only help competition organizers to understand the competition in a better way,
but also provide strategic implications to contestants, such as guiding the team formation and designing the
submission strategy.
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1 INTRODUCTION

In recent years, data science competitions have become a successful way to deliver state-of-the-
art solutions to commercial and non-profit institutions (the organizer) as well as for data science
experts and beginners (the contestant) to sharpen their data science skills. As a result, online data
science competition platforms such as Kaggle [28], Tianchi [55], and Dianshi [17] are becoming
increasingly popular. Figure 1 gives an illustrative example of the multi-modal transportation rec-
ommendation [35] competition we hosted on the Baidu-Dianshi platform. In general, the common
routine of the data science competition is a tripartite game, where: (1) the organizer posts a problem
with a set of pre-specified competition rules, datasets, as well as awards (such as money, plague,
and even a job position); (2) the contestants form a team to compete for the award by submitting
state-of-the-art solutions of the problem; and (3) the platform provides a series of functions, in-
cluding team collaboration, submission evaluation, open discussion, and perhaps computational
resources (for example, virtual machine and GPU).

Although there is increasingly more literature sharing their winning solutions of different data
science competitions, only a little attention has been paid to the data science competition itself. For
example, Athanasopoulos et al. [3] identified the positive effect of the live leaderboard on improv-
ing the accuracy of the result, Tausczik et al. [53] found open sharing in data science competition
is useful to improve individual but not collective performance, and Lu et al. [39] analyzed the so-
cial network attributes among contestants across multiple data science competitions. Nevertheless,
existing studies mainly focus on the effects of different competition mechanisms (such as reputa-
tion system [16], open discussion [53]) to the final solution quality. Little effort has been made to
inspect the team’s performance during the competition.

In this article, we investigate the team’s time-evolving competition performance in a crowd inno-
vation context [6]. Specifically, we aim at addressing the following two research questions (RQs)
to profile and predict the performance of each team.

— RQ 1. What are the representative features that can help to profile team performance in the
data science competition?

—RQ 2. Can we predict the team’s future performance by exploiting significant features found
inRQ 1?

Understanding the above two RQs can be beneficial for each party in the game. On the one
hand, it is helpful for the organizer and the platform to optimize the competition to engage
contestants for crowd innovation and proactively manage the competition, such as resource
allocation and fraud detection. On the other hand, it has strategic implications to contestants such
as the team formation guidance, the submission strategy design, and the competition participation
selection. However, two major challenges arise to answer the above two RQs. First, there is a
vast amount of potential features that may be correlated with the team’s performance. The first
challenge is how to identify the representative features, and to what extent are they correlated
with the team’s future performance. Second, the future performance of each team is not only
correlated with static features (for instance, the number of team members) but also correlated
with dynamic features (for example, the number of submissions in each day) that are changing
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Fig. 1. Interface of the KDD Cup 2019 regular machine learning competition on the Baidu-Dianshi platform.
As a full-fledged online platform, Dianshi provides a broad range of functions, such as data acquisition, cloud
workbench, result submission, automatic evaluation, live leaderboard, and open discussion. In past years,
Dianshi has hosted a series of famous data science competitions such as KDD Cup 2019 regular machine
learning competition, WSDM Cup 2019, and so on.

during the competition. Besides, the team’s future rank prediction problem suffers from a serious
data scarcity problem because data science competitions are usually launched in a short time
period (usually less than two months), and the contestant size is relatively small (mostly less than
a thousand). How to capture and generalize the non-linear dependency among these correlated
features for the team’s future performance prediction is another challenge.

To tackle the above challenges, in this article, we leverage team’s rank as a proxy, and con-
duct a data-driven analysis to dissect features that are correlated with the team’s future perfor-
mance. Specifically, we acquire heterogeneous datasets from both the competition platform and
third-party professional websites such as Github. From heterogeneous datasets, we extract a rich
set of features and quantitatively analyze their relevance with the team’s rank. As a result, sta-
tistically significant features are used for team performance profiling and subsequent prediction
tasks. Furthermore, we propose a Multi-task Representation Learning (MTRL) framework for
team’s future rank prediction. MTRL integrates both static and dynamic features into a hierarchical
multi-task learning framework and derives differentiable team representations by incorporating
multiple auxiliary tasks. By sharing common information in multiple related tasks, the predictive
model obtains a notable performance improvement on various datasets.

The contributions of this article are summarized as follows. (1) We construct multiple data sci-
ence competition datasets and quantify a rich set of features that are correlated with team future
performance. Our assessments point out that static features such as nation, team size, and dynamic
features such as submission count, historical rank are significantly correlated with the team’s per-
formance. We also observe “the stronger, the stronger” rule in the competition and confirm the
positive effect of team diversity for team’s future rank. (2) We formulate the team’s future rank
prediction problem and propose the MTRL framework. To the best of our knowledge, MTRL is
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Table 1. Statistics of Datasets

Data description | KDDCuP BI1LLBOARD REMOTESENSE WSDMCup

# of submissions 11,957 2,882 2,873 385
# of teams 1,696 1,139 537 136
# of contestants 2,403 1,666 659 155
# of stages 3 3 2 1
Duration (day) 44 38 46 23
Metric F1 score MAP Accuracy score  AUC score

the first deep learning-based framework for predicting the team’s future rank in the data science
competition. Note the proposed data-driven framework and the prediction model are general and
can be extended to incorporate more data sources. (3) We evaluate MTRL on four real-world data
science competitions. The results demonstrate the predictability of the team’s future performance
based on our constructed features, and validate the effectiveness of MTRL against five baselines.

The rest of this article is organized as follows. We describe four real-world datasets used in our
study in Section 2, extract and analyze features in Section 3, and elaborate on the MTRL model
in Section 4. Experiments of MTRL on four real-world datasets are presented in Section 5. We
discuss the key findings, implications, and limitations of this work in Section 6, and review related
work in Section 7. Finally, we conclude in Section 8.

2 DATA DESCRIPTION

This section introduces datasets used in this work, including the competition information data, the
submission record data, and the contestant information data. We selected four data science compe-
titions at different scales, i.e., KDD Cup 2019 (KDDCup), Billboard Recognition 2018 (BILLBOARD),
Remote Sensing 2019 (REMOTESENSE), and WSDM Cup 2019 (WSDMCup)). All competitions were
hosted on Baidu-Dianshi platform.! Note that some competitions contain several stages (such as
preliminary, semi-final, and final), we excluded late stages where only a small portion of teams
participate. The statistics of each dataset are summarized in Table 1. Note that Table 1 presents
the number of original registered teams and contestants, where some of them may never submit
to the corresponding competition. More detailed analysis are presented in Sections 2.2 and 2.3.

2.1 Competition Information Data

Competition information data describe the basic information and rules of each data science compe-
tition. For basic information, each record contains a competition ID, the award information, a list
of competition stage IDs, as well as the start and end date of each competition stage. For compe-
tition rules, each record contains the maximum number of team members, the maximum number
of submission times, the team merge rule, and the evaluation metric. In most data science compe-
titions, each contestant requires to join one team, and each team contains at least one contestant.
All our three competition datasets follow this setting.

2.2 Submission Record Data

Submission record data contain the team submission behaviors and historical performances. Once
a team submits a new model or result, the Dianshi platform automatically evaluates the sub-
mission, and returns a result, such as F1 score, accuracy score, and so on. As a result, each
submission generates a submission record data. For instance, [84, 1d30a3, 2019-04-17 08:03:34,1,

L All competition information is available at https://dianshi.baidu.com/competition.
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Fig. 2. Data distributions of the KDDCur dataset: (a) the distribution of team submission count; (b) the day
distribution of submissions; (c) the hour distribution of submissions; and (d) the distribution of contestant
nationality.

0.03711342] is a submission record, where “84” is the competition id, “1d30a3” is the contestant id,
“2019 — 04 — 17 08 : 03 : 34” denotes the submission time, and “0.03711342” stands for the sub-
mission score. The KDDCup dataset contains 11, 957 submission records, the BILLBOARD contains
2, 882 submission records, the REMOTESENSE dataset contains 2, 873 submission records, and the
WSDMCup dataset contains 385 submission records. Each submission record consists of a compe-
tition stage ID, a team ID, the submission time, the evaluation time, and the evaluation result.

We briefly explain the distributions of submission records. As illustrated in Figure 2(a), the dis-
tribution of team submission numbers nearly follows the power law [14], where over 80.1% teams
submit less than 10 times. In fact, a large portion of contestants registered but never submitted a
result, and we excluded them from following statistical analysis and prediction task. Figure 2(b)
depicts the temporal distribution of submissions and Figure 2(c) depicts the hour distribution of
submissions. As can be seen, there are more submissions near competition end, and midnight is
the most popular submission time.

2.3 Contestant Information Data

Contestant information data summarize the basic characteristics of each contestant, such as con-
testant social attributes and professional expertise. In this article, contestant information data
wlere collected from two sources, (1) contestant-provided attributes when registered on Dian-
shi platform, and (2) Github profiles we linked via the e-mail address. For the contestant’s so-
cial attributes, each contestant information record contains the gender, the age, the nation, the
educational level, the industry type, and the competition registration date. For the contestant’s
Github attributes, each record contains the number of repositories, the number of followers, and
the number of following. Each contestant information record is also associated with a team ID
to link with their corresponding teams. For instance, [f7110d, yingshierdu, HKUST, 2019-04-23
21:19:47, employee, PDD, Math, master] is a contestant information record, where “f7110d” is the
contestant id, “yingshierdu” represents the team name, “HKUST” denotes the graduation school,
“2019 — 04 — 2321 : 19 : 47" corresponds to the participation time, “employee” stands for the occu-
pation, “PDD” is the associated company, “Math” represents the major, and “master” denotes the
education degree. The KDDCup involves 2, 403 contestants, the BILLBOARD includes 1, 666 contes-
tants, the REMOTESENSE has 659 contestants, and the WSDMCup has 155 contestants. Note that
for privacy concerns, all records were anonymized and cannot be associated with sensitive infor-
mation such as names and phone numbers.

We further explain the distributions of contestant information data in KDDCup. The nation
distribution is shown in Figure 2(d). As can be seen, China, the United States, and Japan are the
top countries contestants come from. Besides, only a few contestants come from Africa, eastern
Europe, and mid-east. In fact, the nation distribution of contestants in KDDCup nearly matches
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Table 2. Industry Type List

’ Type ID \ Industry name Type ID Industry name ‘

T1 IT T7 Transportation

T2 Education T8 Machinery manufacturing

T3 Financial industry T9 Energy industry

T4 Medical industry T10 Tourism industry

T5 Public administration T11 Construction industry
Others (Legal industry, Textile industry,

Té6 Daily chemical industry T12 Catering industry, Entertainment,
Marketing, Agriculture, and Automotive)

the nation distribution of published Al patents in 2019 [48]. Figure 3(a) reports the distribution of
contestant Github repository number. Similar to the distribution of submission count, we observe
over 77.8% contestants have less than 10 Github repositories. Besides, we observe 30.1% contestants
have a Github account but no repository, which indicates a notable portion of contestants may not
be a professional IT engineer. Figure 3(b) plots the distribution of contestant age. We observe
most KDDCup contestants are between 20 and 29 years old, which matches our expectation that
most contestants are students and junior engineers. Figure 3(c) further illustrates the distribution
of contestant industry type, with the detailed industry list is given in Table 2. We merge rare
classes and preserve 12 industry types in total. As can be seen, over 35.7% contestants do not
work in computer science related industries (such as financial, medical, etc.), indicating that data
science competition successfully attracted participants from a broad range of backgrounds. Lastly,
Figure 3(d) depicts the contestant register date distribution. Overall, the initial period attracts most
contestants and much fewer contestants join near the competition end.

3 FEATURE ANALYSIS

In this section, we introduce how to derive the representative features, along with a systematic
statistical analysis. Having an in-depth understanding of the influence of the single factor and joint
influence of multiple factors can help profile team’s performance and explain the effectiveness
of our prediction model. Specifically, we construct two categories of features: Static features and
Dynamic features.

3.1 Static Features

3.1.1 Contestant Profile Features. Most contestant profile data are categorical and cannot be di-
rectly aggregated by the team. Therefore, we first extract features for each contestant. Specifically,
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we extract age, gender, nationality, education level, job industry type, company, registration date, if
captain, number of Github repositories, number of Github followers, and number of Github following.
Figure 4(a) depicts the relationship between contestants’ age and final rank. We observe that the
average rank of contestants in different age groups is similar, but older contestants tend to have a
higher variance. Figure 4(b) shows the relationship between contestants’ education level and their
final rank. We observe the average rank of different education levels are similar, and the higher
education level does not necessarily guarantee a higher rank. In contrast, the variance among the
undergraduate students is the smallest. The relation among contestant industry type and the final
rank is reported in Figure 4(c). Surprisingly, contestants majoring in IT do not dominate other
contestants. In fact, we observe contestants majoring in the medical and energy industries achieve
higher ranks on average.

3.1.2 Team Profile Features. We exploit the number of team members, if mixed companies, if
mixed education institutes, if mixed industries, if a merged team, and first submission date as team
profile features. Figure 4(d) shows the influence of team member size to final rank, with 90% confi-
dence interval. In general, more team members tend to result in better final rank, but with higher
variance. Note that over 72.8% teams in KDDCup are solo (team with only one contestant), and
only 4.3% teams are with over five members, which partially explains why the final rank variance
of larger teams are greater. Figure 5(a) reports the final rank distribution of solo teams and coop-
erative teams (teams with more than one contestant). On average, we observe cooperative teams
consistently achieve higher rankings than solo teams. Looking further into the composition of co-
operative teams, we discover cross-company team-up significantly helps improve the final rank
of the team, as shown in Figure 5(b). We observe the similar influence of cross education insti-
tutions and cross industry type team-ups, as reported in Figure 5(c) and (d). These observations
also indicate that interdisciplinary teams are generally more productive and creative [12], and can
therefore achieve a higher rank.
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3.2 Dynamic Features

Dynamic features are those changing overtime during the competition. For most competitions, the
leaderboard is updated on a daily basis. In this work, we regard one day as a basic time step and
extract dynamic features for each time step.

3.2.1 Team Behavior Features. For each time step, we extract corresponding submission count,
submission scores, and accumulated engagement days (number of days have logins on the website).
Besides, we further augment team behavior features including the max submission score in the
time step, the minimal submission score in the time step, the submission scores difference in the
time step, and activeness compared with last time step (i.e., submit more or less or equal number of
results). All the above team behavior features only depend on the team itself and vary over time. We
observe a positive correlation between submission count and engagement days with the final rank,
as shown in Figure 6. Teams with more submissions and longer-term competition engagement tend
to achieve a higher rank. Besides, the rank improvement tends to be smoother when the submission
count is over a 50% max submission count limit and when the engagement days are over 50% of the
competition’s duration. Similar to the influence of team size, the variance also goes larger for teams
with larger submission counts and longer engagement days, partially because the distribution of
submission counts and engagement days also follows the long-tail distribution. Figure 7(a) further
depicts team submission behaviors by day. All teams are sorted by final rank, with top-ranked
teams plotted in the upper part of the figure. As can be seen, teams with higher ranks tend to be
more active and submit more results during the competition. Besides, in the KDDCup competition,
the top 100 teams will enter the next competition stage. We observe the submission number of top
50 teams decreasing near the competition end since they are with higher probability of entering
the next stage. While teams rank between 50 and 200 tend to submit more before the competition
end, fighting to enter the next stage.

3.2.2  Team Performance Features. We further extract current rank, current score, historical high-
est rank, and total submission count as team performance features. Different with team behavior
features, team performance features are either temporally monotonic (for instance, current score
is the highest historical score) or related to other teams (for example, current rank is also depen-
dent on the rank of other teams). Figure 7(b) plots the rank of each team by day, where the red
color indicates a higher rank, blue indicates a lower rank, and blank indicates no valid results yet.
In Figure 7(b), teams are ordered the same as in Figure 7(a). We can make the following two obser-
vations. First, we observe “the stronger, the stronger” rule in the competition, where the leading
teams tend to achieve a higher rank, and the back teams tend to lose the game as time goes on.
For example, once a team falls out of the top-100, few of them can come back again. Second, top
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ranks at the beginning do not indicate a higher final rank. In fact, as more and more teams join
the competition, top teams at the beginning are evenly distributed in the final rank list. Figure 8
shows the relationship between rank list in specific days versus the final rank list. As can be seen,
as the competition goes on, more and more teams join and submit their results (more data points).
We also observe the rank improvement is with higher variance (points at the top left of the trian-
gle), but the rank decline is gradual (points at the bottom right of the triangle), which can also be
validated by Figure 7(b). Besides, the rank of most teams become stable as the competition goes
on, which indicates the difficulty of performance improvement near the end of the competition.

3.3 Correlation Analysis

Finally, we conduct a statistical correlation analysis between the team’s features and the corre-
sponding future rank in the KDDCup. Specifically, we calculate the Pearson correlation coeffi-
cient [5] and p-value between each numerical feature and future rank, as shown in Table 3. We
calculate the Pearson correlation between features and the team’s final rank for static features
and the feature of accumulated engaged days and total submission count. For the other dynamic
features (submission count, submission scores, max submission score, minimal submission score,
submission scores difference, activeness, current score, and historical highest rank), we first di-
vide the KDDCup dataset into a series of 12-day time windows, and extract features within each
time window. Then, we calculate the Pearson correlation with the team rank on the following day
of the corresponding time window. Note in Table 3, a lower value of achieved rank represents a
better team performance in the competition. Therefore, a negative Pearson correlation coefficient
indicates the numerical feature is positively correlated with the future performance, and a smaller
value indicates a higher correlation. Besides, we calculate the F-value [38] and p-value between
each categorical feature and future rank, as shown in Table 4. In short, we observe static features
such as registration date, number of team members, nationality, company, if caption, and team
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Table 3. Pearson Correlation between Numerical Features and the Team’s Future Rank

’ Feature \ Correlation H Feature \ Correlation ‘

Age —-0.023 Accumulated engaged days —0.524"

Register date —-0.190" Max submission score —0.660"

# of Github repositories —-0.105 Minimal submission score —0.064

# of Github followers —-0.059 Submission scores difference -0.192

# of Github following —-0.019 Activeness —-0.010

# of team member —-0.128* Current score —0.764*

First submission date 0.081 History highest rank 0.942"

Submission count —-0.507* Total submission count —0.488*
Submission scores —0.556"

(“indicates p < 0.001).

Table 4. F-value between Categorical Features and the Team’s Final Rank

’ Feature ‘ F-value H Feature ‘ F-value ‘
Gender 0.013 If captain 28.43"
Nation 3.50" If merged team 44.20"

Education level 0.25 If mixed education institutes | 10.09
Job industry type | 0.94 If mixed companies 13.33*
Company 3.70* If mixed industry types 10.23

(“indicates p < 0.001).

mix type are statistically significant for their future rankings. Dynamic features such as submis-
sion count, engagement days, submission scores, and current rank are also statistically significant
for the future rankings. In general, we observe dynamic features have a higher correlation with the
future rankings, which motivates us to devise a dedicated learning module for dynamic features
in subsequent predictive analysis.

4 PREDICTIVE ANALYSIS

In this section, we present the MTRL framework for the team’s future performance prediction. In
the following, we use bold capital letters and bold lowercase letters to denote matrices and vectors,
and use non-bold letters and squiggy letters to denote scalar variables and sets, respectively.

4.1 Formal Problem Statement

Ranking is the most representative index of the team’s performance. We extract the team’s future
ranking as a proxy for the team’s future performance. Consider a set of n teams S = {s,s2,...,$,}
composed of m individual contestants U = {uy, uy, ..., Uy}, where n < m. Let x} denotes extracted
static team profile features of team s; € S, x} denotes static contestant profile features of contes-
tantu; € U. x?’t and x‘f " denote team behavior features and team performance features of team
s; € S at time step t. The dynamic team behavior features and team performance features in previ-
ous T time steps are X? = {Xb:1-T+1 Xb1=T+2  Xbtyand XP = (XPt-T+1 xXpt=T+2 Xp.t)
respectively. We use y! € y’ to denote the rank of team s; at time step ¢. The team’s future rank
prediction problem is formally defined below.

PrROBLEM 1. Team’s future ranking prediction problem. Given a historical time window T,
static team profile features X°, contestant profile features X*, dynamic team behavior features X°,
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Fig. 9. Architecture overview of MTRL.

and team performance features X?, our problem is to forecast the rank of all s; € S over next v time
steps,
f(Xs;Xu; Xb; Xp) N (yt+1’§,t+2’ o ,}'\'t+‘[>’ (l)

where ¥/ is the estimated rank of all teams at time step t + i, and f(-) is the mapping function we
aim to learn.

4.2 Framework Overview

The architecture of MTRL is shown in Figure 9. Given features constructed in Section 3, we first
propose a representation learning module to obtain unified representations for each team. In par-
ticular, the static embedding block applies several juxtaposed embedding layers to project sparse
categorical features into low dimensional embedding vectors, and the dynamic embedding block
employs a recurrent neural network to capture dependencies among dynamic features along the
timeline. The overall team representation is a combination of the learned static and dynamic em-
bedding vectors. Then, we propose a novel hierarchical multi-task learning module to boost the pre-
diction performance. Specifically, the low-level task layer jointly considers the difference among
team representations in multiple future time steps prediction, and the high-level task layer lever-
ages several correlated auxiliary tasks to share task commonalities and therefore improve model
generalization ability.

4.3 Learning Unified Team Representation

The team representation is a combination of static team embedding and dynamic team embedding.

Static embedding block. We leverage several distinct embedding layers [23] to project both
team and contestant features into low dimensional dense vectors. Each contestant and team is rep-
resented as a concatenation of corresponding contestant embedding vectors and team embedding
vectors, respectively. Since a team may contain multiple contestants, we apply an average aggre-
gation operation to transform contestant-specific embeddings to a team level representation. Note
other types of aggregation functions are also applicable for contestant embedding aggregation.
The overall static representation of team s; is derived by

ki
S _ S 1 u
bi = Embed(x;) ® - ]Zl Embed(xY), )

where Embed(-) is the embedding operation, @ is the concatenation operation, k; is number of
contestants of team s;, and )] is a vector addition operation.
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Dynamic embedding block. Dynamic features are evolving over time. Exploiting the sequen-
tial pattern and inherent correlations of dynamic features in different time steps is beneficial for the
team’s future rank prediction. Inspired by the recent success of recurrent neural network (RNN)
on processing sequential data [22, 44], we employ the Gated Recurrent Unit (GRU) [13], a sim-
ple yet effective variant of RNN, to learn the dynamic representation. Given behavior features and
performance features of previous T steps as the input, the dynamic representation of team s; at
time step t is defined as

h! =(1-2z)oh!™ +2 OHf, (3)
where h!~! is the dynamic representation of team s; at last time step, z!, Ef are defined as

rl = o(W,[h! ' @ x> @x'] +b,)
t
1

2= oW [h ' eoxP oxP']+b,) , (4)
Hf = tanh(Wg[rf ohi"e xf’t ® xf’t] +b;)

where W,, W, W,~l, b,,b,, bﬁ are learnable parameters, o denotes Hadamard product, and o is the
sigmoid function. The learned dynamic representation incorporates dependencies of all dynamic
features in previous T steps; therefore, it is more informative for future rank prediction.

With the static representation h} and dynamic representation h?, we can directly predict ranks
of s; in next 7 time steps,

(97957, 917) = o (Wolh§ @ h{] +b,) , (5)
where W, is learnable parameters and b, is the bias.

4.4 Hierarchical Multi-task Learning

Since most data science competitions are only held for a short time period (typically within sev-
eral months), future rank prediction suffers from the data scarcity problem. In previous studies,
Multi-task learning (MTL) has been widely applied in many areas such as natural language pro-
cessing [15] and image recognition [40]. It has been proven that introducing extra auxiliary tasks
is beneficial to improve the prediction performance [69]. To this end, we further introduce the
hierarchical multi-task learning block to share common knowledge between highly related tasks
to boost the team’s future rank prediction. In general, there are two types of MTL, hard parameter
sharing based [9] and soft parameter sharing based [18]. We follow the hard parameter sharing
paradigm [9] in the implementation, where multiple tasks share most bottom layers (i.e., the rep-
resentation learning module) while having dedicated task-specific layers on top. Specifically, we
propose a hierarchical multi-task learning based on hard parameter sharing, where different tasks
share low level neural networks but have independent output layers. The intuition behind the hi-
erarchical multi-task learning module is two-fold. First, the team performance at different future
time steps is different, the team representation should incorporate the temporal difference for each
future time step. However, the output layer defined in Equation (5) regards the team representa-
tion for each future time step to be identical, which neglects the temporal difference in future rank
prediction. Second, as illustrated in Section 3, the future rank is highly related to many indicators,
such as engagement activity and score, which can be adopted as auxiliary supervision signals. In
particular, the hierarchical multi-task learning module contains two components, (1) the low-level
MTL block where each task corresponds to a different future time step, and (2) the high-level MTL
block where each task corresponds to a correlated signal with the future rank.

Low-level MTL. We first define the low-level MTL block to model the difference of team rep-
resentations at different time steps. Specifically, given the future time step 7, we define a set of
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low-level tasks as {77 /™1, 77%2, ... 7 !*7}. For each task 7 %/, we aim at learning a correspond-
ing mapping function

19 (0 @ hf) - by, ©)

where hfﬂ is time-step specific representation for time step t + j. In this way, the low-level MTL
outputs 7 different team representations {hf“,hl“z, ..., hi*7} for team s;. Note the low-level
MTL does not have direct supervision signals. Instead, we optimize time-dependent team
representations based on high-level tasks via backpropagation. Note the low-level multi-task
learning distinguishes itself from traditional multi-task setting from two aspects, (1) each task in
the low-level is an implicit task without direct supervision signals, and (2) the time-dependent
team representations are optimized based on high-level tasks via backpropagation. Such time-
dependent formulation can be analogized to positional embedding in transformer network [56],
where the representation in each position should play a different role in the sequential prediction
process.

High-level MTL. In the high-level MTL, except the main rank prediction task 7™, we further
introduce two auxiliary tasks, i.e., the future score prediction task 7% and the future activity predic-
tion task 7~ %. The two auxiliary tasks above have been proven highly correlated with the team’s
future rank in Section 3. Similar with the main task, the future score prediction task and the fu-
ture activity prediction task aim at forecasting the score (such as accuracy, F1 score, etc.) and the
activity trends of each s; € S over the next r, respectively. In particular, we define the future activ-
ity prediction task as a multi-class classification problem, which includes three classes defined as:
(1) Improve if the submission count is greater than yesterday, (2) Stable if the submission count
equals to yesterday, and (3) Decline if the submission count is lower than yesterday. We employ a
softmax function for the future activity prediction task.

One intermediate problem of hierarchical multi-task learning is the task combination explosion.
Assume there are m lower-level tasks and n higher-level tasks, we need mXx n task-specific layers at
the high-level, which exponentially increases the learning parameters and makes the model hard
to converge. To this end, we recursively reuse the high-level multi-task block for each lower-level
representation. In other words, for each high-level task, we aim at learning a mapping function
shared by all low-level outputs. Recursively reusing high-level tasks further shares common in-
formation among different time steps, and reduces the number of parameters of the hierarchical
multi-task module from O(mnd?) to O(md + nd), where d is the number of parameters in each task
specific layer. For instance, for the main task 7™, the output layer is defined as

977 = o (WIhi™ +b7) )

where gf“’ is the estimated rank of team s; at time step t+j, WJ' and b are task specific parameters.
The output layer of the two auxiliary tasks are defined similarly, except we employ the softmax
function for future activity prediction,

t+j
ey eWohi4bo)
i K e(wohj*f+bo)’
k=1

®)

where ﬁiHj is the estimated future activity probability of team s; at time step ¢ + j, K is number of
classes, W, and b, are task specific parameters.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 98. Publication date: April 2022.



98:14 H. Liu et al.

4.5 Optimization

In MTRL, all learnable parameters and tasks are optimized jointly. For the main task, we aim at
minimizing the mean absolute error (MAE) between the predicted rank and the observed rank

0-1553

i=1 j=1

97 -y ©)
Similarly, the objective of the future score prediction is defined as

1 n T
OFEZZ

i=1 j=1

~qy, t+j ap, t+j
gt -yt (10)

where g?l’t+j and y?“”j are respectively the estimated and the observed score of s; at time step

t + j. For the future activity prediction task, we aim at minimizing the cross-entropy (CE) loss

LSOO anttig o santt
O3 = — Z Zy?z’ ]logyl@’ / (11)
i=1 j=1

where §%* and y?'*/ are estimated and observed activity class of s; at time step ¢ + j.

Besides the objective of each task, we also incorporate the L2 regularization in optimization.
The overall learning objective is

O = 01 + A1(02 + O3) + A2||W]l2, (12)

where A; and A, are hyper-parameters for auxiliary tasks and L2 regularization, respectively.
Finally, we employ the Adam [29] optimizer for joint training.

5 EXPERIMENTS
5.1 Experimental Setup

We evaluate MTRL on four datasets described in Section 2. We mainly focus on: (1) the overall
performance of MTRL, (2) the effectiveness of hierarchical multi-task learning, (3) the parameter
sensitivity, (4) the robustness check of MTRL with different input size and output steps, (5) model
generalization across different datasets, and (6) the case study. For model training, we chronolog-
ically order each dataset, and split the training set, validation set, and test set by 60%, 20%, 20%,
respectively.

5.1.1  Metrics. We adopt MAE and NDCG, two widely used metrics [34, 59] to evaluate the
performance. Specifically, MAE is the averaged absolute distance between the estimated rank and
observed rank of each team.

N ~
19; — yil
MAE = ' 270 13
Z < (13)

where ¢J; and y; is the predicted rank and observed rank of team i, respectively, and N is the total
number of teams.

NDCG is define as the ratio of Discounted Cumulative Gain (DCG) and Ideal Discounted
Cumulative Gain (IDCG). Given a ranked team list, the DCG at position k is defined as

k zrel(si)—l

DCG(k) = ) —
i log,(i+1)

(14)
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Table 5. Overall Prediction Performance

Dataset | KDDCup (Mean/STD) | BiLLBoARD (Mean/STD) | REMOTESENSE (Mean/STD) | WSDMCup (Mean/STD)
Algorithm MAE NDCG MAE NDCG MAE NDCG MAE NDCG

LR 36.46/2.27  0.51/0.05 | 21.54/1.27  0.44/0.03 | 19.19/0.60 0.49/0.02 4.95/0.29 0.60/0.04
RF 37.34/0.50  0.42/0.01 | 32.61/0.35  0.51/0.02 | 14.12/0.32 0.71/0.03 7.82/0.02 0.74/0.04
XGBoost | 34.90/0.49  0.60/0.02 | 30.00/0.08  0.45/0.02 | 14.34/0.20 0.77/0.03 6.57/0.04  0.84/0.04 %
DNN 35.54/2.02  0.57/0.07 | 19.68/1.47  0.55/0.04 | 16.72/0.52 0.53/0.07 4.81/0.13 0.65/0.10
SDRNN | 31.99/1.23 0.71/0.08 % | 17.20/0.58 0.59/0.03 % | 15.34/0.97 0.72/0.08 % | 4.13/0.09  0.76/0.05 %
MTRL 27.75/0.57 0.82/0.04 | 15.94/0.17 0.64/0.01 | 11.83/0.55 0.86/0.02 3.86/0.13  0.83/0.05

All the improvements are statistically significant according to Welch’s t-test at level 0.01 comparing MTRL to
other baselines, except for results marked with “x” (Smaller MAE and larger NDCG are better).

where rel(s;) is the relevance score of the ith team. We set rel(s;) as the actual position of s; in
the ranked route list in descending order. The IDCG is defined as the ideal score DCG can achieve.
Then the NDCG is defined as

DCG(k)

NDCG(k) = 7525 o

(15)
5.1.2 Implementation. Our model and all neural network based models are implemented with
Pytorch. The RF and GBDT are implemented based on the XGboost library [11]. All methods
are evaluated on a Linux server with 8 NVIDIA Tesla P40 GPUs. We choose the input time step
T = 12 and 7 = 3 for prediction. We set the learning rate Ir = 0.01, A; = 0.03, and A, = 0.0001.
In each layer, we fix the hidden size to 32. For fair comparison, all parameters of each baseline
are carefully tuned based on grid search strategy. The source code and data are available at
https://github.com/RaymondHLIU/KDDCup-Analy.

5.1.3 Baselines. Since there are no dedicated methods for team’s future rank prediction, we
adopt both statistical learning and deep learning methods as baselines. Specifically, we compare
our model against the following five baselines.

— LR uses logistic regression for future rank prediction. We concatenate static features and T
step dynamic features described in Section 3 as the input. We set the learning rate [r = 0.01,
and weight decay A, = le — 4.

— RF predicts future rank via the Random Forest. The input feature is the same as LR. We set
the number of trees to 150, and the maximum depth of a tree to 5.

— XGBoost predicts future rank using a variant of Gradient Boosting Decision Tree [11],
which is also known as one of the most effective statistical learning models in many data
science competitions. We set the maximum depth of a tree to 5, and learning rate Ir = 0.01.

— DNN is a deep learning-based model comprising two layer fully connected hidden neural
network. The input of DNN is the same as LR. The hidden size of the first and the second
hidden layer is 20 and 10, respectively. We choose learning rate Ir = 0.001, and weight decay
/12 = le —3.

— SDRNN employs a recurrent neural network for processing dynamic features. The architec-
ture of SDRNN is the same as our model except for the hierarchical multi-task module. We
set the learning rate [r = 0.003, weight decay A; = le — 4, and fix the hidden size to 32 in
each layer.

5.2 Overall Performance

Table 5 reports the overall performance of MTRL as well as all the compared baselines on four
datasets with respect to MAE and NDCG. We run all methods five times with different random
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Fig. 10. Parameter sensitivity on KDDCup.

Table 6. Ablation Study of Hierarchical Multi-task Learning on KDDCup

[ w/o auxiliary tasks | w/o Jow-level tasks | w/o score prediction | w/o trend prediction | MTRL

MAE 30 30.05 29.83 28.95 27.75
NDCG 0.71 0.8 0.76 0.72 0.82

seeds and report the mean and standard deviation (STD) of the results. Specifically, we have
trained a separate model for each dataset based on the training set. The reported results are eval-
uated on the corresponding test set. For example, the model trained with the training set of the
KDDCup is evaluated on the test set of the KDDCuP only. As can be seen, our model outper-
forms all baselines using both MAE and NDCG on four datasets. Specifically, MTRL achieves
(13.25%,7.33%, 22.88%, 6.54%) improvement compared with the state-of-the-art baseline (SDRNN)
using MAE, and the improvement using NDCG are (15.49%, 8.47%, 19.44%, 9.21%). We observe the
improvement of MTRL on larger datasets are greater. The improvement of MTRL compared with
SDRNN on WSDMCur is relatively small, which is possibly because it is a tiny dataset and SDRNN
is powerful enough to capture useful information. We notice the results of MTRL are more statis-
tically significant than all baselines using both metrics, except for the NDCG results of SDRNN in
all datasets and XGBoost in the WSDMCup dataset. This is perhaps because we use mean square
error as optimization objective rather than ranking loss, which makes the NDCG score relatively
unstable. Moreover, WSDMCUP is a relatively small dataset, which makes MTRL prone to overfit-
ting. Moreover, we observe LR performs poorly on four datasets compared with other non-linear
models, which demonstrates that simply applying a linear combination is not enough to fully uti-
lize the static and dynamic features we constructed. Besides, XGBoost achieves similar or even
better results compared with all deep learning-based methods except MTRL on all datasets, which
demonstrate its effectiveness on capturing non-linear dependencies. Overall, the above results
demonstrate the predictability of team’s future performance and the effectiveness of our features
as well as the predictive model.

5.3 Effectiveness of Hierarchical Multi-task Learning

Then, we evaluate the effectiveness of the hierarchical multi-task learning module to validate the
benefit of each auxiliary task for the future ranking prediction. As reported in Table 6, we observe
a substantial improvement on the main future ranking prediction task by introducing low-level
tasks, high-level score prediction, and trend prediction tasks. Note that removing all auxiliary tasks
yields slightly better MAE than only removing low-level tasks but results in higher variance (1.52
versus 0.82 standard deviations) and lower NDCG score. Moreover, we observe the mean absolute
percentage error (MAPE) of the score prediction tasks on four datasets are {0.1,0.12,0.14, 0.2},
and the accuracy of the future activity prediction task on four datasets are {0.79,0.81,0.71,0.79},
demonstrating the predictability of two auxiliary tasks.
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Fig. 11. Robustness check on KDDCup.

5.4 Parameter Sensitivity

Besides, we report the impact of the hidden size d, the learning rate Ir, and the influence of A; and
Az using MAE on KDDCup. The results on other datasets are similar. All parameters are tested on
three future steps. Each time we vary a parameter and set others to their default values.

First, to test the impact of hidden size, we vary d from 4 to 128. The results are illustrated in
Figure 10(a). As can be seen, there is a performance improvement when we increase d from 8 to
32 and a performance degradation when d is greater than 128. In fact, choosing d = 32 is good
enough to capture the latent information from features. A larger d will induce extra computation
overhead and make the model hard to converge.

Next, we vary Ir from le — 4 to 3e — 2. The results are depicted in Figure 10(b). We observe that
our model yields an optimal performance when Ir = le — 2, and a performance degradation when
we further increase or decrease [r. The performance of MTRL is relatively stable when Ir is smaller
than le — 2, and a larger learning rate induces suboptimal prediction results.

To test the impact of auxiliary tasks, we vary A; from 0 to 0.3. The results are reported in
Figure 10(c). MTRL yields an optimal performance when A; = 0.003 and is not very sensitive
to A;. To test the impact of L2 regularization, we vary A, from 1e — 5 to 3e — 3. As reported in Fig-
ure 10(d), we observe the best performance when A; = 1e — 4. Overall, our model is more sensitive
to A;, and a relatively small A, is good enough for regularization.

5.5 Robustness Check

After that, we evaluate the robustness of MTRL with (1) different training set ratio, and (2) different
input time step T and output time step 7. First, we vary the training test ratio from 0.4 to 0.65, test
the model on subsequent 20% data and the latest 20% data, respectively. As shown in Figure 11(a),
we observe a better prediction performance when we increase the ratio of training set. Besides,
we observe consistently larger predictive error in the final period. This makes sense because the
uncertainty of the team’s rank goes large in the distant future. Overall, the team’s performance is
also predictable by using early period features as training data, but with a relatively larger error.
Then, we vary 7 from 1 to 6, and vary T from 9 to 15 . As shown in Figure 11(b), the predictive
error linearly increases when we increase the prediction time step. This makes sense because the
uncertainty of the team’s rank goes large in the distant future. Moreover, we observe that the MAE
fluctuates slightly when T = 15. This is because of the duration of competitions usually short, too
long input sequence further reduces the number of training instances, and may induce unnecessary
noise.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 5, Article 98. Publication date: April 2022.



98:18 H. Liu et al.

Table 7. Performance on Different Target Datasets

Target KDDCup BILLBOARD REMOTESENSE WSDMCup
Source MAE TA | MAE TA MAE TA MAE TA
KDDCup 27.31 0 14.85 —571% | 825 —26.54% | 2.57 -31.10%
BILLBOARD 36.63 34.13% | 15.75 0 93  —17.19% | 2.88 —22.79%
REMOTESENSE | 45.83 67.81% | 24.24 53.90% | 11.23 0 413 10.72%
WSDMCup 49.19 80.12% | 25.15 59.68% | 11.48  2.23% 3.73 0

Table 8. Result of Top-10 Teams on KDDCup

Team name \ Predicted rank Final rank

T 1
Stacking Artascope
B-kdd
Tuosanqianxumi
DeepBlueAl
Wangxiaohu327
Tiyuyitiaojie
Dongfangshenghao
Yuanshanwenjiayoulongyu
Magic Click
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5.6 Model Generalization

To test the generalization of our proposed model, we save the parameters of the best MTRL models
trained on the training set of KDDCuP, BILLBOARD, REMOTESENSE, and WSDMCup, respectively.
The hyperparameters of MTRL models are the same as those reported in Table 5. Then, we eval-
uate each model on the test set of these four datasets to assess the generalization ability of the
model. We measure the MAE on each dataset and calculate the relative difference of MAE, which
are shown in Table 7. Overall, we observe a better generalization ability of models trained on
larger datasets. Compared with the model trained on BiLLBOARD, REMOTESENSE, and WSDMCup,
the model trained on KDDCupP achieves 5.71%, 26.54%, and 31.1% prediction reduction on BILr-
BOARD, REMOTESENSE, and WSDMCUP test set, respectively. On the other hand, the model trained
on smaller datasets achieves a worse prediction performance on larger datasets, for example, model
trained on REMOTESENSE and test on KDDCupP result in 67.81% larger prediction error. The above
results validate our assumption that data scarcity is a major bottleneck in team’s future rank pre-
diction. Besides, the above results suggest knowledge sharing methods such as transfer learning is
perhaps an important direction in which to further improve the prediction performance. We left
it as the future work.

5.7 Case Study

To further understand the prediction results of our model, Table 8 reports the predicted top-10
teams by MTRL and their actual final ranking in KDDCup. Overall, we observe the predicted rank
matches or nearly matches the final ranks for most teams except the 6th team. By further look into
the data, we find the score of the 6th team remains unchanged in the last few days and surpassed by
teams in the behind with significant improvements (two teams achieved over 50 rank improvement
in last four days). This result indicates modeling such sudden changes in a short period can further
improve the overall prediction performance.
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6 DISCUSSION

In this section, we discuss the key findings and implications of this work and point out several
limitations.

Findings. Our quantitative and predictive analysis reveal several facts. First, we find online data
science competitions successfully attract worldwide contestants of different backgrounds, such as
age, nation, education level, and industry. Second, we identify both static and dynamic features
such as team size, submission count, and daily rank are positively correlated with the team’s future
performance with statistical significance and are helpful for the team’s future rank prediction. In
contrast, features such as education level and Github activity, which are thought to be significant
professional indicators, do not have a strong correlation with the team’s future performance. Third,
we observe “the stronger, the stronger” rule in data science competitions, where front teams tend
to keep their advantage and dominate back teams in the rest of the competition. Fourth, the higher-
ranked teams tend to be more positive in the competition, and the rank list tends to be stable as time
goes on. Finally, we proved the team’s future performance is predictable based on our constructed
features and MTRL.

Implications. Based on the above findings and our experience of hosting the KDD Cup 2019
machine learning competition, for future competitions, we have several tips for organizers:

— Control the duration. A moderate length competition is enough to distinguish expertise from
the crowd, and obtain a good enough solution, control the duration to trade-off the expected
solution quality and operation costs.

— Launch promotion events in the middle. we recommend organizers to launch promotion
events such as release a better baseline in the middle of the competition to improve the
engagement of middle back contestants.

Besides, we also have several tips for contestants:

— Form a diverse team. Forming a team with members of diversified backgrounds such as in-
dustry type, company, and education institution sustainability improves the contestant’s
performance. Actually, even simply forming a team also has a positive effect on the final
ranking, meaning that “Two heads are better than one”.

— Try more submissions. Teams with more submissions tend to achieve a higher final rank. In
fact, trying more submissions not only verifies the score of different solutions, but also helps
disentangle interference of different features and model components, which in consequence
provides deeper insights into improving the performance.

— Keep engaged. Keeping engaged opens a window to leverage the intelligence from other
contestants. Activities such as forum discussions and tracking new baselines are also helpful
for improving the overall performance.

In the future, we envision our study helping contestants for competition strategy design, and
organizers for proactive competition management.

Limitations. Our work is limited by the data that we have access to. All competitions used in
this work were hosted on the Dianshi platform. To ensure the above findings and implications are
generalizable and not site-specific, future research will need to test on other data science compe-
tition platforms such as Kaggle and Tianchi. Besides, the feature analysis conducted in this work
mainly focuses on correlation analysis. The audience should keep in mind that representative indi-
cators do not necessarily mean causation of the team’s future ranking. In addition, we only involve
Github profile data for data augmentation. The proposed framework can be further improved by
extending more data sources. We anticipate future work will integrate more contestant informa-
tion such as Kaggle profile and contestant discussion record to improve the model effectiveness.
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7 RELATED WORK

Our work is highly related to crowd-sourcing based problem solving, team profiling and performance
prediction, sequence prediction, and multi-task deep learning.

Crowd-sourcing based problem solving. Data science competition is directly related to
crowd-sourcing based problem solving, where the form can be either a contest or a collaboration.
This process can be either one-shot or long-lasting, and the expected output ranges from a machine
learning model [4], a software [2, 7], and a mathematical problem solution [54], to even a logo [63].
The majority of existing studies mainly focus on empirical study of contest mechanisms and the
user behavior impact. To name a few, Athanasopoulos et al. [3] find real-time updated leaderboard
is helpful for improving the accuracy of the final result, Hill et al. [26] conclude that too few or
too many collaborators negatively influence the quality of the final solution, Tausczik et al. [53]
investigate the influence of open sharing on the quality of the final solution. Moreover, Archak
et al. [2] find contestants are strategically choosing competitions to maximize their reward, Wang
et al. [57] study factors that influence contestant sustained participation, and Bullinger et al. [8]
find the positive effect of team cooperation, which also validates our observations in data science
competitions. In this work, we focus on the data science competition and conduct a comprehensive
quantitative and predictive analysis to understand the team’s time-evolving performance in depth.

Team profiling and performance prediction. There have been works on characterizing the
factors that could influence team performance. For example, pobiedina et al. [50] suggest that the
cooperation and social ties within a team are crucial factors for the success of a team. Moreover,
the national diversity of a team has the potential to influence performance. Nascimento et al. [47]
figure out the difference in team cooperation strategies and members’ skills between experienced
and inexperienced teams. Cheng et al. [12] confirm the positive impact of team diversity on perfor-
mance and the team behaviors during the competition. Ye et al. [65] further emphasize the impor-
tance of demographics of the individual member, geographic information between team members,
and the role of being the captain in influencing the member performance during the competition.

The team performance prediction has been applied in multiple scenarios, such as educa-
tion [10, 21, 36, 49], sports [32, 45], and esports [27, 46]. Previous studies generally model the
team performance based on the static team and user profile [32, 49], dynamic team performance
and behaviors [10, 21, 36, 46, 60], or the combination of two types of features [27, 45]. For instance,
Omar et al. [49] propose a rough sets approach in predicting the collaboration efficiency of stu-
dents based on the team profile. Miiller et al. [46] predict the team performance in online games
by using the attributes of the dynamic communication network with the random forest model.
Min et al. [45] forecast the pairwise winning probability in football matches by combining both
the team profile and runtime status using a Bayesian method. Hodge et al. [27] conduct real-time
team winning prediction in a video game with a set of machine learning models, such as logistic
regression and tree-based models. This work investigates the team rank prediction in the context
of the real-world data science competition, which is seldom discussed in the literature. Compared
with previous studies, we incorporate both the users’ and teams’ static features and the dynamic
in-competition features with a deep learning approach. Meanwhile, we adopt the strategy of multi-
task learning in our prediction framework.

Sequence prediction. Deep learning has been widely adopted in various sequence prediction
tasks, such as user behavior prediction, spatiotemporal prediction, and financial prediction. For on-
line user behavior prediction, Liu et al. [37] predict user’s future engagement time in a social app by
leveraging their historical behavior via a deep sequential model. Miao et al. [43] predict topic trends
and popularity in microblogs in an online fashion. Eldele et al. [19] recognize human activity by
learning the time-series representation in an unsupervised fashion. In sequential recommendation,
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each user is represented as a sequence of interacting items and a series of most likely interacting
items in the future are generated [51, 61, 68]. In spatiotemporal prediction tasks, both the temporal
autocorrelation of each sequence and the spatial correlation among sequences are utilized for fore-
casting. For instance, Liang et al. [34] predict air quality by modeling the mutual impact of signal se-
quences, and Han et al. [24] jointly forecast air quality and weather conditions based on graph neu-
ral network and adversarial training. Wang et al. [58] solve the problem of traffic flow prediction
through aggregating information from adjacent roads. Zhang et al. [66] predict parking availability
by combining the information of nearby parking lots. For financial prediction, Li et al. [31] predict
the ever-changing stock movement via tensor model, and Liu et al. [20] jointly predict stock trend
and prices via a temporal graph neural network. In this work, we leverage the deep recurrent neural
network to capture the sequential behaviors of each team to predict the teams’ future performance.

Multi-task deep learning. On one hand, deep learning has been widely used in many areas
such as computer vision and natural language processing, because of its effectiveness on learning
and generalizing feature representation [1, 30, 33, 41, 62]. On the other hand, multi-task learning
has been proven beneficial for boosting model performance by transferring common knowledge
among tasks [69]. Based on the information sharing method, multi-task deep learning can be cat-
egorized into hard parameter sharing based [9, 67] and soft parameter sharing based [18, 42]. In
general, multi-task deep learning is adopted with the parameter sharing approach [70], and we
do likewise. Recent advances of multi-task learning focus on dynamically modeling task relation-
ships [64, 70], and some recent studies [25, 52] has successfully facilitated multiple tasks in lower
neural network layers to guide low-level representation learning. Inspired by the above studies,
we propose a novel hierarchical multi-task representation learning model for team’s future rank
prediction, where the low-level team representations are jointly supervised by high-level tasks.
To the best of our knowledge, this is the first attempt to apply multi-task deep learning to help
understand data science competitions.

8 CONCLUSION

In this article, we investigated the time-evolving team performance in data science competitions.
We identified and quantified four categories of representative features that are significantly cor-
related with team’s future performance. We further proposed a multi-task deep learning-based
model, MTRL, for team’s future rank prediction. In particular, we introduced a representation
learning module to project and aggregate both static and dynamic features into a unified em-
bedding vector. Moreover, we proposed a hierarchical multi-task learning module to capture the
inner-connection among time-dependent team representations as well as multiple relevant auxil-
iary tasks. Extensive experimental results on three real-world data science competitions demon-
strate the predictability of the team’s future performance by using our constructed features and
MTRL. Our analysis and prediction framework has been deployed on the Baidu-Dianshi platform
to instrument and forecast team performance. In the future, we plan to investigate the causal re-
lationships among features, and explore contestant behaviors and performances across multiple
data science competitions to improve the generalizability of MTRL.
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